ON THE THEORY OF IMPULSIVE FOLLOW-UP SYSTEMS

((TEORII IHPUL' SNYKH SLED IABHCGIKR SISTEM)

```
PMH Vol.24, No.2, 1960, pp. 309.315
            Ia. N. ROITENBERG
                    (Moscow)
(Received 7 January 1960)
```

1. The equations of motion of an impulsive follow-up system, for which the control signal vanishes during the pause, can be represented for sufficiently small values of the time constants of the control circuits in the following form:

$$
\begin{equation*}
\dot{y}_{1}-y_{2}=0, \quad \dot{y}_{2}+2 \varepsilon y_{2}=\mu k^{2}\left[x(t)-y_{1}+q(t)\right] \tag{1.1}
\end{equation*}
$$

Here

$$
\mu=\left\{\begin{array}{ll}
1 & \text { for } \vartheta \tau<t<\vartheta \tau+\tau \tau \tag{1.2}\\
0 & \text { for } \vartheta \tau+\tau_{1}<t<(\vartheta+1) \tau
\end{array} \quad\left(\vartheta=\left[\frac{t}{\tau}\right]\right)\right.
$$

y_{1} is the generalized coordinate of the follow-up system, $x(t)$ is the law of motion which the follow-up system must reproduce, r is the period of alternation, r_{1} is the working interval, $r_{2}=r-r_{1}$ is the pause, $q(t)$ is the additional signal to be given at the entry of the follow-up system for its accelerated adjustment, and θ is the integral part of t / r.

Consider the problem [1] of selecting the law of variation of the function $q(t)$ with respect to the time t in such a way that at the instant $t=T_{1}$ the adjustment of the follow-up system would occur, i.e. the relations

$$
\begin{equation*}
y_{1}\left(T_{1}\right)=0, \quad y_{2}\left(T_{1}\right)=0 \tag{1.3}
\end{equation*}
$$

would hold.
We shall assume that $x(t) \equiv 0$ during the time of adjustment and that $q(t)$ is a step-function which preserves its values in time intervals which are multiples of the alternating period r.

In order to investigate the motion of the follow-up system under consideration it is appropriate to pass from the system of differential equations (1.1) to a system of difference equations. The latter can be
obtained by connecting the values y_{1} and y_{2} at the end and the beginning of one period of alternation. So, for the first period of alternation during the working interval $0 \leqslant t \leqslant r_{1}$ the differential equations

$$
\begin{equation*}
\dot{y}_{1}-y_{2}=0, \quad \dot{y}_{2}+2 \varepsilon y_{2}+k^{2} y_{1}=k^{2} q(0) \tag{1.4}
\end{equation*}
$$

hold.
Corresponding to Equations (1.4) the law of motion of the system during the working interval will be the following:

$$
\begin{align*}
y_{1}(t)= & \frac{1}{\omega}
\end{aligned} \quad\left[y_{2}(0)+\varepsilon y_{1}(0)-\varepsilon q(0)\right] e^{-\varepsilon t} \sin \omega t+\quad \begin{aligned}
& +\left[y_{1}(0)-q(0)\right] e^{-\varepsilon t} \cos \omega t+q(0), \quad \omega=\sqrt{k^{2}-\varepsilon^{2}} \tag{1.5}\\
y_{2}(t)= & y_{2}(0) e^{-\varepsilon t} \cos \omega t+\left[\frac{k^{2}}{\omega} q(0)-\frac{k^{2}}{\omega} y_{1}(0)-\frac{\varepsilon}{\omega} y_{2}(0)\right] e^{-\varepsilon t} \sin \omega t
\end{align*}
$$

At the end of the working interval the functions y_{1} and y_{2} will assume the following values:

$$
\begin{gather*}
y_{1}\left(\tau_{1}\right)=\left(\frac{\varepsilon \nu_{1}}{\omega}+\nu_{2}\right) y_{1}(0)+\frac{\nu_{1}}{\omega} y_{2}(0)+\left(1-\frac{\nu_{1} \varepsilon}{\omega}-\nu_{2}\right) q(0) \tag{1.6}\\
y_{2}\left(\tau_{1}\right)=-\frac{\nu_{1} k^{2}}{\omega} y_{1}(0)+\left(\nu_{2}-\frac{\varepsilon \nu_{1}}{\omega}\right) y_{2}(0)+\frac{\nu_{1} k^{2}}{\omega} q(0)
\end{gather*}
$$

where

$$
\begin{equation*}
\nu_{1}=e^{-\varepsilon \tau_{1}} \sin \omega \tau_{1}, \quad \nu_{2}=e^{-\varepsilon \tau_{1}} \cos \omega \tau_{1} \tag{1.7}
\end{equation*}
$$

During the pause $\tau_{1} \leqslant t \leqslant \tau$ the differential equations of motion according to (1.1) will have the form

$$
\begin{equation*}
\dot{y}_{1}-y_{2}=0, \quad \dot{y}_{2}+2 \varepsilon y_{2}=0 \tag{1.8}
\end{equation*}
$$

The law of motion of the system during the pause will be the following:

$$
\begin{equation*}
y_{1}(t)=y_{1}\left(\tau_{1}\right)+\frac{1}{2 \varepsilon} y_{2}\left(\tau_{1}\right)\left[1-e^{-2 \varepsilon\left(t-\tau_{1}\right)}\right], \quad y_{2}(t)=y_{2}\left(\tau_{1}\right) e^{-2 \varepsilon\left(t-\tau_{1}\right)} \quad\left(\tau_{1} \leqslant t \leqslant \tau\right) \tag{1.9}
\end{equation*}
$$

At the end of the pause, i.e. at the instant $t=r$, the functions y_{1} and y_{2} will have the following values:

$$
\begin{equation*}
y_{1}(\tau)=y_{1}\left(\tau_{1}\right)+\frac{1-\nu_{3}}{2 \varepsilon} y_{2}\left(\tau_{1}\right), \quad . y_{2}(\tau)=v_{3} y_{2}\left(\tau_{1}\right), \quad v_{3}=e^{-2 \varepsilon \tau_{2}} \tag{1.10}
\end{equation*}
$$

Substituting into the expressions (1.10) the values $y_{1}\left(r_{1}\right)$ and $y_{2}\left(r_{1}\right)$ from (1.6) we obtain

$$
\begin{align*}
& y_{1}(\tau)=-a_{11} y_{1}(0)-a_{12} y_{2}(0)+\left(1+a_{11}\right) q(0) \tag{1.11}\\
& y_{2}(\tau)=-a_{21} y_{1}(0)-a_{22} y_{2}(0)+a_{21} q(0)
\end{align*}
$$

where

$$
\begin{gather*}
a_{11}=-\left(\frac{\varepsilon \nu_{1}}{\omega}+\nu_{2}-\frac{\nu_{1} k^{2}}{\omega} \frac{1-\nu_{3}}{2 \varepsilon}\right), \quad a_{21}=\frac{\nu_{1} \nu_{3} k^{2}}{\omega} \\
a_{12}=-\left[\frac{\nu_{1}}{\omega}+\frac{1-\nu_{3}}{2 \varepsilon}\left(\nu_{2}-\frac{\varepsilon \nu_{1}}{\omega}\right)\right], \quad a_{22}=-\nu_{3}\left(\nu_{2}-\frac{\varepsilon \nu_{1}}{\omega}\right) \tag{1.12}
\end{gather*}
$$

The relations (1.11) connect the values of the functions y_{1} and y_{2} at the end and the beginning of the first period of alternation. Obviously, analogous relations will hold for any (n th) period of alternation

$$
\begin{align*}
& y_{1}((n+1) \tau)+a_{11} y_{1}(n \tau)+a_{12} y_{2}(n \tau)=\left(1+a_{11}\right) q(n \tau) \tag{1.13}\\
& y_{2}((n+1) \tau)+a_{21} y_{1}(n \tau)+a_{22} y_{2}(n \tau)=a_{21} q(n \tau)
\end{align*}
$$

Equations (1.13) represent the difference equations which describe the motion of the considered impulsive follow-up system

Introducing the matrices

$$
f(T)=\left\|\begin{array}{rr}
T+a_{11} & a_{12} \tag{1.14}\\
a_{21} & T+a_{22}
\end{array}\right\|, \quad y=\left\|\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right\|, \quad b=\left\|\begin{array}{r}
1+a_{11} \\
a_{21}
\end{array}\right\|
$$

where T is the anticipation operator determined by the relation

$$
T^{s} y_{k}=y_{k}(t+s \tau)
$$

we obtain the matrix difference equation

$$
\begin{equation*}
f(T) y(t)=b q(t) \tag{1.15}
\end{equation*}
$$

which is equivalent to the system of scalar difference equations (1.13).
Assume that the elements y_{1} and y_{2} of the matrix y in the time interval $0 \leqslant t<r$ coincide with $y_{1}{ }^{*}(t)$ and $y_{2}{ }^{*}(t)$ determined by the expressions (1.5) and (1.9):

$$
\begin{equation*}
y(t)=y^{*}(t) \quad(0 \leqslant t \leqslant \tau) \tag{1.16}
\end{equation*}
$$

Under these conditions the solution of the matrix difference equation (1.15) can be constructed by means of the methods of the operational calculus. Letting

$$
\begin{equation*}
\xi(p) \stackrel{\rightarrow}{\rightarrow} q(t), \quad \eta(p) \stackrel{\rightarrow}{\rightarrow} y(t) \tag{1.17}
\end{equation*}
$$

and taking into account that

$$
\begin{equation*}
T y_{i} \leftarrow e^{p \tau}\left[\eta_{i}(p)-\alpha_{i}(p)\right], \quad \alpha_{i}(p)=p \int_{0}^{\tau} y_{i}^{+}(t) e^{-p t} d t \quad(i=1,2) \tag{1.18}
\end{equation*}
$$

we obtain for the matrix equation (1.16) the following image equation:

$$
\begin{equation*}
f(\gamma) \eta(p)-\gamma \alpha(p)=b \xi(p) \tag{1.19}
\end{equation*}
$$

where

$$
\gamma=e^{p \tau}, \quad \eta(p)=\left\|\begin{array}{c}
\eta_{\mathrm{I}}(p) \tag{1.20}\\
\eta_{2}(p)
\end{array}\right\|, \quad \alpha(p)=\left\|\begin{array}{c}
\alpha_{1}(p) \\
\alpha_{2}\left(p^{\prime}\right.
\end{array}\right\|
$$

From Equation (1.19) we find

$$
\begin{equation*}
\eta(p)=\gamma \frac{F(\gamma) \alpha(p)}{\Delta(\gamma)}+\frac{F(\gamma) b}{\Delta(\gamma)} \xi(p) \tag{1.21}
\end{equation*}
$$

where $F(y)$ is the adjoint matrix of the matrix $f(y)$:

$$
F(\gamma)=\left\|\begin{array}{rr}
\gamma+a_{22} & -a_{12} \\
-a_{2 \mathrm{~L}} & \gamma+a_{\mathrm{ni}}
\end{array}\right\|
$$

and $\Delta(y)$ is the determinant of the matrix $f(y)$:

$$
\begin{equation*}
\Delta(\gamma)=\gamma^{2}+\left(a_{11}+a_{22}\right) \gamma+a_{11} a_{22}-a_{12} a_{21}=\left(\gamma-\gamma_{1}\right)\left(\gamma-\gamma_{2}\right) \tag{1.22}
\end{equation*}
$$

Denote by $M(t)$ and $L(t)$ the originals of the following images:

$$
\begin{equation*}
\gamma \frac{F(\gamma) \alpha(p)}{\Delta(\gamma)} \div M(t), \quad(\gamma-1) \frac{F(\gamma) b}{\Delta(\gamma)} \div \dot{\rightarrow} L(t) \tag{1.23}
\end{equation*}
$$

Since

$$
\begin{gather*}
\gamma \frac{F(\gamma) \alpha(p)}{\Delta(\gamma)}=\frac{F\left(\gamma_{1}\right)}{\gamma_{1}-\gamma_{2}} \frac{\gamma \alpha(p)}{\gamma-\gamma_{1}}+\frac{F\left(\gamma_{2}\right)}{\gamma_{2}-\gamma_{1}} \frac{\gamma \alpha(p)}{\gamma-\gamma_{2}} \tag{1.24}\\
\frac{\gamma \alpha(p)}{\gamma-\gamma_{i}} \div y^{*}(t-\vartheta \tau) \gamma_{i}^{*} \tag{1.25}
\end{gather*}
$$

where $y^{*}(t-\vartheta r)$ is a periodic function of period r, then

$$
\begin{equation*}
M(t)=\left[\frac{F\left(\gamma_{1}\right)}{\gamma_{1}-\gamma_{2}} \gamma_{1}^{\theta}+\frac{F\left(\gamma_{2}\right)}{\gamma_{2}-\gamma_{2}} \chi_{2}\right] y^{*}(t-\vartheta \tau) \tag{1.26}
\end{equation*}
$$

Analogously

$$
\begin{gather*}
(\gamma-1) \frac{F(\gamma) b}{\Delta(\gamma)}=\frac{F\left(\gamma_{1}\right) b}{\gamma_{1}-\gamma_{2}} \frac{\gamma-1}{\gamma-\gamma_{2}}+\frac{F\left(\gamma_{2}\right) b}{\gamma_{2}-\gamma_{1}} \frac{\gamma-1}{\gamma-\gamma_{2}} \tag{1.27}\\
L(t)=\frac{F\left(\gamma_{1}\right) b}{\gamma_{1}-\gamma_{2}} \gamma_{1}{ }^{\theta}+\frac{F\left(\gamma_{2}\right) b}{\gamma_{2}-\gamma_{1}} \gamma_{2}^{*} \tag{1.28}
\end{gather*}
$$

As seen from (1.28), $L(t)$ is a step-function. According to the assumption made above the function $q(t)$ is also a step-function. Then, on the basis of a theorem on the multiplication of the images of step-functions, we obtain

$$
\begin{equation*}
\frac{F(\gamma) b}{\Delta(\gamma)} \xi(p) \div \sum_{j=1}^{\vartheta} L(\vartheta \tau-j \tau) q(j \tau-\tau) \tag{1.29}
\end{equation*}
$$

Thus, the solution of the matrix difference equation (1.15), satisfying the condition (1.16), has the following form:

$$
\begin{equation*}
y(t)=\left[\frac{F\left(\gamma_{1}\right)}{\gamma_{1}-\gamma_{2}} \gamma_{1}{ }^{\vartheta}+\frac{F\left(\gamma_{2}\right)}{\gamma_{2}-\gamma_{1}} \gamma_{2}{ }^{\vartheta}\right] y^{*}(t-\vartheta \tau)+\sum_{j=1}^{\vartheta} L(\vartheta \tau-j \tau) q(j \tau-\tau) \tag{1.30}
\end{equation*}
$$

The elements of the matrix $y(t)$ are

$$
\begin{align*}
y_{i}(t) & =\left[\frac{F_{i 1}\left(\gamma_{1}\right)}{\gamma_{1}-\gamma_{2}} y_{1}^{*}(t-\vartheta \tau)+\frac{F_{12}\left(\gamma_{1}\right)}{\gamma_{1}-\gamma_{2}} y_{2}^{*}(t-\vartheta \tau)\right] \gamma_{1}{ }^{\vartheta}+\left[\frac{F_{i 1}\left(\gamma_{2}\right)}{\gamma_{2}-\gamma_{1}} y_{1}^{*}(t-\vartheta \tau)+\right. \\
& \left.+\frac{F_{i 2}\left(\gamma_{2}\right)}{\gamma_{2}-\gamma_{1}} y_{2}^{*}(t-\vartheta \tau)\right] \gamma_{2}{ }^{\theta}+\sum_{j=1}^{\theta} L_{i}(\vartheta \tau-j \tau) q(j \tau-\tau) \quad(i=1,2) \quad \text { (1.31) } \tag{1.31}
\end{align*}
$$

In order that at the instant $t=T_{1}=\vartheta_{1} \tau$ the follow-up system be adjusted, i.e. the relations (1.3)

$$
y_{1}\left(T_{1}\right)=0, \quad y_{2}\left(T_{1}\right)=0
$$

hold, the following conditions which can be obtained by means of (1.31),

$$
\begin{equation*}
\sum_{j=1}^{\vartheta_{1}} L_{i}\left(\vartheta_{i} \tau-j \tau\right) q(j \tau-\tau)=R_{i}\left(T_{1}\right) \quad(i=1,2) \tag{1.32}
\end{equation*}
$$

must hold, where

$$
\begin{align*}
R_{i}\left(T_{1}\right)= & -\left[\frac{F_{i_{1}}\left(\gamma_{1}\right)}{\gamma_{1}-\gamma_{2}} y_{1}{ }^{*}(0)+\frac{F_{i 2}\left(\gamma_{1}\right)}{\gamma_{1}-\gamma_{2}} y_{2}^{*}(0)\right] \gamma_{1}^{\theta_{1}}- \\
& -\left[\frac{F_{i_{1}}\left(\gamma_{2}\right)}{\gamma_{2}-\gamma_{1}} y_{1}{ }^{*}(0)+\frac{F_{i 2}\left(\gamma_{2}\right)}{\gamma_{2}-\gamma_{1}} y_{2}^{*}(0)\right] \gamma_{2}^{\theta_{1}} \quad(i=1,2) \tag{1.33}
\end{align*}
$$

Decompose the interval ($0, T_{1}$) into two intervals ($0, j_{1} r$) and ($j_{1} r$, T_{1}) and assume that the function $q(t)$ is a step-function which preserves its values in these time intervals. Denote these values by $q(0)$ and $q\left(t_{1}\right)$, respectively. The relations (1.32) then assume the form

$$
\begin{equation*}
c_{i}^{(0)} q(0)+c_{i}^{(1)} q\left(t_{1}\right)=R_{i}\left(T_{1}\right) \quad(i=1,2) \tag{1.34}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{i}^{(0)}=\sum_{j=1}^{j_{1}} L_{i}\left(\vartheta_{1} \tau-j \tau\right), \quad c_{i}^{(1)}=\sum_{j=j_{1}+1}^{\theta_{1}} L_{i}\left(\vartheta_{1} \tau-j \tau\right) \quad(i=1,2) \tag{1.35}
\end{equation*}
$$

From Equations (1.35) we obtain

$$
\begin{equation*}
q(0)=\frac{\Delta_{1}}{\Delta}, \quad q\left(t_{1}\right)=\frac{\Delta_{2}}{\Delta} \tag{1.36}
\end{equation*}
$$

where

$$
\Delta_{1}=\left|\begin{array}{ll}
R_{1}\left(T_{1}\right) & c_{1}^{(1)} \tag{1.37}\\
R_{2}\left(T_{1}\right) & c_{2}^{(1)}
\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{cc}
c_{1}^{(0)} & R_{1}\left(T_{1}\right) \\
c_{2}^{(0)} & R_{2}\left(T_{1}\right)
\end{array}\right|, \quad \Delta=\left|\begin{array}{cc}
c_{1}^{(0)} & c_{1}^{(1)} \\
c_{2}^{(0)} & c_{2}^{(1)}
\end{array}\right|
$$

The expressions (1.36) determine the law according to which $q(t)$ must be varied in order that at the instant $t=T_{1}$ the follow-up system be adjusted.
2. Suppose that the strengthening coefficient of the follow-up system varies with time. Then the coefficient k^{2} entering into Equations (1.1) will be a certain function of the time

$$
\begin{equation*}
k^{2}=x(t) \tag{2.1}
\end{equation*}
$$

We shall assume that $\kappa(t)$ is a step-function, the width of the steps being equal to the period of alternation of the follow-up system.

Then during each separate period of alternation the differential equations (1.4) and (1.8) will have constant coefficients while the parameters $\omega, \nu_{1}, \nu_{2}, a_{11}, a_{12}, a_{21}$ and a_{22}, determined by the expressions (1.7) and (1.12), will be certain functions of the time which will be determined provided that the function $\kappa(t)$ is given.

The system of difference equations (1.13) in the given case can be represented by the following matrix difference equation:

$$
\begin{equation*}
T y+a(t) y=Q(t) \tag{2.2}
\end{equation*}
$$

where

$$
y=\left\|\begin{array}{c}
y_{1} \tag{2.3}\\
y_{2}
\end{array}\right\|, \quad a(t)=\left\lvert\, \begin{array}{cc}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\|, \quad Q(t)=\| \begin{gathered}
{\left[1+a_{11}(t)\right] q(t)} \\
a_{21}(t) q(t)
\end{gathered}\right. \|
$$

The solution of Equation (2.2) has the following form:

$$
\begin{equation*}
y(t)=\theta(t) \theta^{-1}(t-\vartheta \tau) y^{*}(t-\vartheta \tau)+\sum_{j=1}^{\theta} \theta(t) \theta^{-1}(t-\vartheta \tau+j \tau) Q(t-\vartheta \tau+j \tau-\tau) \tag{2.4}
\end{equation*}
$$

where $\theta(t)$ is a square matrix, the columns of which are linearly independent solutions of the homogeneous matrix equation

$$
\begin{equation*}
T y+a(t) y=0 \tag{2.5}
\end{equation*}
$$

The matrix $\theta^{-1}(t)$ is the inverse matrix of $\theta(t)$.
In the expression (2.4) the second term vanishes in the interval $0<$ $t<t$. Therefore, according to (2.4)

$$
\begin{equation*}
y(t)=y^{*}(t) \quad(0 \leqslant t \leqslant \tau) \tag{2.6}
\end{equation*}
$$

holds, where $y^{*}(t)$ is a matrix, the elements of which in the interval $0 \leqslant t \leqslant t$ are determined by the expressions (1.5) and (1.9).

Denoting by $N(t, j r)$ a matrix function of weight

$$
\begin{equation*}
N(t, j \tau)=\theta(t) \theta^{-1}(t-\vartheta \tau+j \tau) \tag{2.7}
\end{equation*}
$$

the solution (2.4) can be put in the form

$$
\begin{equation*}
y(t)=N(t, 0) y^{*}(t-\vartheta \tau)+\sum_{j=1}^{\vartheta} N(t, j \tau) Q(t-\vartheta \tau+j \tau-\tau) \tag{2.8}
\end{equation*}
$$

The elements of the matrix $y(t)$ according to (2.8) have the form

$$
y_{i}(t)=\sum_{k=1}^{2} N_{i k}(t, 0) y_{k}^{*}(t-9 \tau)+\sum_{k=1}^{2} \sum_{j=1}^{9} N_{i k}(t, j \tau) Q_{k}(t-9 \tau+j \tau-\tau)(i=1,2)
$$

Substituting the values Q_{k} given by (2.3) we can reduce the expressions (2.9) to the following form:

$$
y_{i}(t)=\sum_{k=1}^{2} N_{i k}(t, 0) y_{h}{ }^{*}(t-\vartheta \tau)+\sum_{j=1}^{2} W_{i}(t, j \tau) q(t-\vartheta \tau+j \tau-\tau) \quad(i=1,2)
$$

where

$$
\begin{align*}
W_{i}(t, j \tau) & =N_{i 1}(t, j \tau)\left[1+a_{11}(t-\vartheta \tau+j \tau-\tau)\right]+ \\
& +N_{i 2}(t, j \tau) a_{21}(t-\vartheta \tau+j \tau-\tau) \quad(i=1,2) \tag{2.11}
\end{align*}
$$

At the instant $t=T_{1}=\vartheta_{1} r$ the expressions (2.10) assume the form
$y_{i}\left(T_{1}\right)=\sum_{k=1}^{2} V_{i k}\left(T_{1}, 0\right) y_{k}{ }^{*}(0)+\sum_{j=1}^{\vartheta_{1}} W_{i}\left(T_{1}, j \tau\right) q(j \tau-\tau) \quad(i=1,2)$
where according to (2.11) we have
$W_{i}\left(T_{1}, j \tau\right)=N_{i 1}(T, j \tau)\left[1+a_{11}(j \tau-\tau)\right]+N_{i 2}\left(T_{1}, j \tau\right) a_{21}(j \tau-\tau) \quad(i=1,2)$
In order that at the instant $t=T_{1}$ the follow-up system be adjusted, i.e. the relations (1.3),

$$
y_{1}\left(T_{1}\right)=0, \quad y_{2}\left(T_{1}\right)=0
$$

hold, the following conditions must be satisfied:

$$
\begin{equation*}
\sum_{j=1}^{\vartheta_{1}} W_{i}\left(T_{1}, j \tau\right) q(j \tau-\tau)=R_{i}^{*}\left(T_{1}\right), \quad(i \ldots 1,2) \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{i}^{*}\left(T_{1}\right)=-\sum_{k=1}^{2} N_{i k}\left(T_{1}, 0\right) y_{k}^{*}(0) \tag{2.15}
\end{equation*}
$$

Decomposing as above the time interval ($0, T_{1}$) into two intervals ($0, j_{1} r$) and ($j_{1} r, T_{1}$), and assuming $q(t)$ to be a step-function, the values of which in these intervals are $q(0)$ and $q\left(t_{1}\right)$, respectively, we can reduce Equations (2.14) to the form

$$
\begin{equation*}
s_{i}^{(0)} q(0)+s_{i}^{(1)} q\left(t_{1}\right)=R_{i}^{*}\left(T_{1}\right) \quad(i=1,2) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{i}^{(0)}=\sum_{j=1}^{j_{1}} W_{i}\left(T_{1}, j \tau\right), \quad s_{i}^{(1)}=\sum_{j=j_{1}+1}^{8_{1}} W_{i}\left(T_{1}, j \approx\right) \quad(i=1,2) \tag{2.17}
\end{equation*}
$$

Thus, the values of $q(0)$ and $q\left(t_{1}\right)$ will be

$$
\begin{equation*}
q(0)=\frac{\Delta_{1}^{*}}{\Delta^{*}}, \quad q\left(t_{1}\right)=\frac{\Delta_{2}^{*}}{\Delta^{*}} \tag{2.18}
\end{equation*}
$$

where

$$
\Delta_{1}{ }^{*}=\left|\begin{array}{ll}
R_{1}{ }^{*}\left(T_{1}\right) & s_{1}{ }^{(1)} \tag{2.19}\\
R_{2}{ }^{*}\left(T_{1}\right) & s_{2}{ }^{(1)}
\end{array}\right|, \quad \Delta_{2}{ }^{*}=\left|\begin{array}{ll}
s_{1}{ }^{(0)} & R_{1}{ }^{*}\left(T_{1}\right) \\
s_{2}{ }^{(0)} & R_{2}{ }^{*}\left(T_{1}\right)
\end{array}\right|, \quad \Delta^{*}=\left|\begin{array}{cc}
s_{1}{ }^{(0)} & s_{1}{ }^{(1)} \\
s_{2}{ }^{(0)} & s_{2}{ }^{(1)}
\end{array}\right|
$$

Calculating the quantities (2.18), the functions $N_{i k}\left(T_{1}, j r\right)(i, k=$ 1,2), occurring in the expressions (2.13) and representing for a fixed value $t=T_{1}$ the elements of a matrix function of weight $N(t, j r)$, are assumed to be known in the interval $0<t<T_{1}=\vartheta_{1} \boldsymbol{T}^{\text {. Analogously are }}$ assumed to be known the quantities $\left.N_{i k}\left(T_{1}, 0\right)\right\}_{i, k}=1,2$), occurring in the expressions (2.15) and representing for $t=T_{1}, j=0$ the values of the elements of a matrix function of weight $N(t, j r)$.

From the results obtained in the paper [2] it follows that

$$
\begin{equation*}
N_{1 k}\left(T_{1}, j \tau\right)=Y_{l i}(j \tau) \quad(k=1,2) \tag{2.20}
\end{equation*}
$$

where Y_{k} are the solutions of the conjugate system of difference equations

$$
\begin{align*}
& Y_{1}(t)+a_{11}(t) Y_{1}(t+\tau)+a_{21}(t) Y_{2}(t+\tau)=0 \tag{2.21}\\
& Y_{2}(t)+a_{12}(t) Y_{1}(t+\tau)+a_{22}(t) Y_{2}(t+\tau)=0
\end{align*}
$$

constructed for the system of difference equations (2.2), and satisfying in the interval $\vartheta_{1} r \leqslant t<\left(\vartheta_{1}+1\right) r$ the conditions

$$
\begin{equation*}
Y_{1}(t)=1, \quad Y_{2}(t)=0 \tag{2.22}
\end{equation*}
$$

Analogously

$$
\begin{equation*}
N_{2 k}\left(T_{1}, j \tau\right)=Y_{k}^{*}(j \tau) \quad(k=1,2) \tag{2.23}
\end{equation*}
$$

where $Y_{k}^{*}(j r)$ are the solutions of the system of difference equations (2.21), satisfying in the interval $\theta_{1} r<t \leqslant\left(\theta_{1}+1\right) r$ the conditions

$$
\begin{equation*}
Y_{1}(t)=0, \quad Y_{2}(t)=1 \tag{2.24}
\end{equation*}
$$

3. As an example, consider an impulsive follow-up system with the following parameters:

$$
\varepsilon=5.275 \mathrm{sec}^{-1}, \quad k^{2}=7500 \mathrm{sec}^{-2}, \quad \tau_{1}=0.01 \mathrm{sec}, \quad \tau_{2}=0.03 \mathrm{sec}
$$

The time interval during which the follow-up system must be adjusted is $T_{1}=4 r=0.16 \mathrm{sec}$. The initial deviations are $y_{1}(0)=0.4, y_{2}(0)=$ $20 \mathrm{sec}^{-1}$.

FIG. 1.

FIG. 2.

For $j_{1}=2$ the values of $q(0)$ and $q\left(t_{1}\right)$ are the following

$$
q(0)=-0.0504, \quad q\left(t_{1}\right)=-0.128
$$

The process of adjustment of the follow-up system is represented by the graphs of the functions $y_{1}(t)$ and $y_{2}(t)$ in Fig. 1. For the same data but a variable strengthening coefficient

$$
k^{2}=x(t)=7500+10000
$$

the values of $q(0)$ and $q\left(t_{1}\right)$ are the following:

$$
q(0)=0.0768, \quad q\left(t_{1}\right)=-0.0619
$$

The process of adjustment of the follow-up system for a variable strengthening coefficient is represented by the graphs of the functions $y_{1}(t)$ and $y_{2}(t)$ in Fig. 2.

BIBLIOGRAPHY

1. Roitenberg, Ia.N., Nekotorye zadachi teorii dinamicheskogo programmirovaniia (Certain problems in the theory of dynamic programming). PMM Vol. 23, No. 4, 1959.
2. Roitenberg, Ia.N., 0 nakoplenii vozmushchenii v nestatsionarnykh lineinykh impul'snykh sistemakh (On the accumulation of perturbations in nonstationary linear impulsive systems). PMM Vol. 22, No. 4, 1958.
